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s Solar and trapped protons and shielding
—~ Energy range and mechanisms
* Proton interactions in Si
—~ lonization (Total lonizing Dose — TID) ,
— Displacement damage (trapping and increased leakage)
— Single event transient effects — important but not covered here
» Displacement damage effects in detectors
— Dark current dependence on temperature
‘- “Universal” damage constant for “bulk” dark current
- Damage distributions, hot pixels & random telegraph noise
— Electric field enhancement of leakage currents
+ Hot pixel mechanisms, introduction rates, and annealing
— On-orbit HST measurements
— Laboratory measurements (WFC3 CCDs)
— Implications for star camera applications: CCDs, APS, CIDs, hybrids
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s~ Proton Energy Loss Mechanisms in Si:

Jonization (LET) and Dis placements (NIELX
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Nonionizing energy loss correlates with displacement damage as LET does
with ionizing dose (rads(Si))

C.J. Dale et al., “A Comparison of Monte Carlo and Analytic Treatments
of Displacement Damage in Microvolumes, IEEE TNS, Vol. 41, 1994.
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Evolution of Initial Vacancy-Interstitial
Pairs to Stable Defects
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-Stable divacancy complex defects may also form and are important for
dark current generation
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,, . Proton Spectra Behind Thick Shields
— -] FEEmEEER]

e Trapped proton environment decreases exponentially .
with energy and is populated out to ~ 400 MeV

e Lower energy protons are stopped more easily, but all
protons lose energy when transported through shield

e Behind ~ 1 inch Al, the average proton energy is >80 MeV
>Relatively few protons below ~ 30 MeV

* Need to anticipate the damage mechanisms for
higher energy protons (> 50 MeV)
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Displacement Damage Processes in Si
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Electrical Effects of

Proton-Iinduced Defects
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y Dark Current and Temperature
I B ) )

E, =0.63eVl

EEEmERE
(~E, /kT) 10
Jd’Kdark «:e i gg -Q-I&":_o%gmgng"f e ! / 4
5 =0.63 ¢!
Jg is bulk leakage or dark ; : —
current: not FET leakage = _ L
. 2 /
K4 Is damage factor H j "
E
E_ is activation energy E :
R
0

A

k is Boltzman'’s constant
k = 8.62 E-05 eV/T

g

220 240 260 280 300
Temperature (degrees Kelvin)

T is Temperature in Kelvin

Srour and Lo find that proton induced leakage from a variety of studies exhibit an
activation energy of from 0.62 to 0.64 eV, and 0.63 works well for both pre and post radiation

[1] “Universal Damage Factor for Radiation-Induced Dark Current in Si Devices,”
J.R. Srour and D.H. Lo, IEEE Trans. Nucl. Sci., NS-47, No. 6, Dec. 2000, pp. 2451-58
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» Same phenomena seen in APS, C!D’s and other diode structures
+» Shot noise assumptions for leakage currents may be too optimistic

LH. Hopkins and G.R. Hopkinson, ‘Random Telegraph Signals from

Proton-Irradiated CCDs,” IEEE TNS, Vol. 40, No. 6, pp. 1567-1574, 1993.
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Pixel-to-Pixel Dark Current
; Nonuniformities (2)
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CID Pixel volume is 1300 cubic microns: or ~1/8t of reference volume after
roughly 40 krad(Si) damage for highest damage leve! shown, so consider ~300
nA/cm? at room temperature and ~258° K to reach 10 nA/cmZfor the average Jy
*Expect more broadening of distribution due to higher proton energies

P.W. Marshall, et al., “Proton-Induced Displacement Damage Distributions and Extremes in
Siticon Microvolumes,” IEEE Trans. On Nucl. Sci, NS-37, No. 6, 1990.
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\ mﬁ HST Hot Pixels — on Orbit Annealing
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WFC, hot pix > 0.04 e/s
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e Accumulation of
hot pixels
mandates monthly
warm-ups to ~0C

o Similar annealing
results observed in
3 HST instruments

% CCD covered by hot pix

« {st {aboratory
measurements
made for WFC3
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WFC3 Hot Pixel Expenment (1)

* A Hubble Space Telescope Wide Field Camera 3 E2V CCD was irradiated
while operating at -83 °C and the dark current studied as a function of
temperature while the CCD was warmed up to a +30°C.

« Populations of
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WFC3 Hot Pixel Experiment (2)
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« Hot pixel populations
tracked during warm-up
and cool-down. Annealing
process underway by
-40C and continues
through warmer
temperatures with no
sharp activation energy.

sThe peak annealing rate
at 0°C is an artifact
caused by the saturation
of hot pixels.
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WFC3 Hot Pixel Experlment (3)
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_ ~Implications for Tracker Performance
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¢ Depending on the application either CTE (for CCDs) or
dark current can be the driving radiation effect.
« Hot pixels may be .caused by small (Coulomb) events in
high field regions and by rare nuclear reactions.

« Observed in CCDs, CIDs, APS and Si hybrid devices
o If your tracker is cooled (even modestly) then you will
underestimate the number of hot pixels by following usual
proton test procedures at room temperature.

«This can overwhelm the capacity of the tracker

software.
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